
Customer: Blueberry Foundation
Date: April 25, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Blueberry
Foundation

Approved By Yevheniy Bezuhlyi | SC Audits Head at Hacken OU

Type Lending & Leverage Farming Platform

Platform EVM

Language Solidity

Methodology Link

Website blueberry.garden

Changelog 07.04.2023 – Initial Review
25.04.2023 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://blueberry.garden

Table of contents

Introduction 5
Scope 5

Initial review scope 5
Second review scope 8

Severity Definitions 11
Executive Summary 12
Risks 13
System Overview 15
Checked Items 16
Findings 19

Critical 19
High 19

H01. Upgradeability Issues — Missing Storage Gap 19
H02. Invalid Calculations — Collateral Value Corruption 19

Medium 20
M01. Unscalable Functionality — Immutable Position Token 20
M02. Best Practice Violation — Zero Price Allowed 20
M03. Contradiction — Unchecked Relyment 20
M04. Contradiction — Zero Price Allowed 21
M05. Contradiction — Requirement Violation 21
M06. Contradiction — Unchecked Relyment 21
M07. Contradiction — Unvalidated TWAP Period 21
M08. Contradiction — Unchecked Relyment 22
M09. Contradiction — Unchecked Relyment 22
M10. Contradiction — Unvalidated TWAP Period 22
M11. Best Practice Violation — Denial of Service 23
M12. Best Practice Violation — Unpausable Oracles 23

Low 24
L01. Mixing Whitelists 24
L02. Redundant Statements 24
L02-1. Redundant Statements 24
L03. Parameters Order Dependence 24
L04. Unscalable Functionality 25
L05. Redundant Using Statement 25
L06. Unscalable Functionality 25
L07. Legacy Check 26
L08. Mixing Functionality Purposes 26
L09. Best Practice Violation 26
L10. Code Duplication 27
L11. Missing Implementation Initialization 27
L12. Misleading Names 27
L13. Redundant Imports 28
L14. Redundant Actions 28
L15. Missing Zero Address Validation 29

www.hacken.io
3

L16. Duplicated Hardcoded Values 29
L17. Code Duplication 29
L18. Default Visibility 30
L19. Best Practice Violation 30

Disclaimers 31

www.hacken.io
4

Introduction

Hacken OÜ (Consultant) was contracted by Blueberry Foundation (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project includes review and security analysis of the
following smart contracts from the provided repository:

Initial review scope

Repository https://github.com/Blueberryfi/blueberry-core

Commit 42671b9dc1f6b52c82efeef901f7de85646a7d09

Functional
Requirements

Public GitBook
General Architecture Overview

Technical
Requirements Essential Scripts

Contracts File: ./contracts/BlueBerryBank.sol
SHA3: fb289c23842e720cfedb169f5674b9cdeacdac66fcb4318fbf34e71098620e2d

File: ./contracts/FeeManager.sol
SHA3: a4c90e5e107fdb97de1af97e5c8f6e65c85a28a762d87950cb4537f28e3f2a6f

File: ./contracts/ProtocolConfig.sol
SHA3: d774188c545e4f4bcfa7989d0e6a2ad38d9487b11d9b6a97519bc7dfc8ce02a4

File: ./contracts/interfaces/IBank.sol
SHA3: 777f084fc8e4401ade12391e7ef47f1f17b1547648fb9238d566988e41c1faed

File: ./contracts/interfaces/IBaseOracle.sol
SHA3: 1db54613a110c42336a1f00b14699f86dedf950eed8997f844be8e92d94a2ff0

File: ./contracts/interfaces/ICoreOracle.sol
SHA3: 239ba394a5236bec9dd18891c973944c98593e603bf3922810839180e0191ebd

File: ./contracts/interfaces/IERC20Wrapper.sol
SHA3: c9479f002df21291440465a676dccf592408916d6be88a9ac4467b8cf58ed758

File: ./contracts/interfaces/IFeeManager.sol
SHA3: 9d7dbcf3dd9a1ed6c54e40a6be5057d9f7889c85fcc4f5f6104ae95d2f171ac5

File: ./contracts/interfaces/IHardVault.sol
SHA3: 3cb04de9cc8d88b32b3f938abe9a0f19f890f46e6f2a4b541344272709c1ee89

File: ./contracts/interfaces/IProtocolConfig.sol
SHA3: 2cd0b9758c9f9f56ef9f8ad7579dc0cbae749b21b8de387790bb6ac9c25d4002

File: ./contracts/interfaces/ISoftVault.sol
SHA3: fbbd551354d38f012f4623aaeef8957098af822f5c962d2d6d77a20b045a9ac4

www.hacken.io
5

https://github.com/Blueberryfi/blueberry-core
https://github.com/Blueberryfi/blueberry-core/tree/42671b9dc1f6b52c82efeef901f7de85646a7d09
https://docs.blueberry.garden/
https://github.com/Blueberryfi/blueberry-core/blob/42671b9dc1f6b52c82efeef901f7de85646a7d09/README.md
https://github.com/Blueberryfi/blueberry-core/blob/42671b9dc1f6b52c82efeef901f7de85646a7d09/package.json#L8-L16

File: ./contracts/interfaces/IWERC20.sol
SHA3: 654a86c582b5819881339ef13ce004b64733bff68326b137588be0ca17570bea

File: ./contracts/interfaces/IWETH.sol
SHA3: 446f3e23908913f35b2515fc297117b3f920b140a0014f0356db969c1d550c9f

File: ./contracts/interfaces/IWIchiFarm.sol
SHA3: 49bf251356eea49824b2e9065caee1989fca859d5747ef86d76a353dcb3d0da6

File: ./contracts/interfaces/balancer/IBalancerPool.sol
SHA3: 1c53dd53251d7a22a9e32bc6fb25afba8c6223afd6c3c378ebf2255dacb12921

File: ./contracts/interfaces/band/IStdReference.sol
SHA3: 0f0355c059c5c8a0d407b42a5aac60d25e807917123f9f35a6978732af34615e

File: ./contracts/interfaces/chainlink/IFeedRegistry.sol
SHA3: 8ca9ce016071ca31dcfd31e1834f636d7ffba517d5aa63e47739fbdd92150614

File: ./contracts/interfaces/compound/ICErc20.sol
SHA3: fb71211d798642299d48034ed6d163c2ec5b308fd198d2f7554d8acec3786679

File: ./contracts/interfaces/compound/ICErc20_2.sol
SHA3: a8c03e372a6a8ae4c2329e7a7d5fba5d520dd2593a091b19065c7318eb403ed2

File: ./contracts/interfaces/compound/ICEtherEx.sol
SHA3: fdb106979e9699fa7a79a7a84a01f871e4433da75bf5109cb69be2baf648d8c0

File: ./contracts/interfaces/compound/IComptroller.sol
SHA3: 8eafdd1adac94b32b1ad678b29be976320b764d19ccb8d14db456af3f8901b88

File: ./contracts/interfaces/curve/ICurvePool.sol
SHA3: 58e0fd3e74a1963f2dfad95c1c47a2820a5ca58204d2d70b10659a72833e5028

File: ./contracts/interfaces/curve/ICurveRegistry.sol
SHA3: 1379a844012d10da4da18414617dd080a448330bf3af2198013edc9b253f586a

File: ./contracts/interfaces/curve/ILiquidityGauge.sol
SHA3: 61d9e445d6c875e89acd4e3d75ef1289a43f2450926ac7cf34b06d7977d94563

File: ./contracts/interfaces/ichi/IIchiFarm.sol
SHA3: f03dd038881f9608466857ae94890c309e82be916dcf09e332abe31536836e58

File: ./contracts/interfaces/ichi/IIchiV2.sol
SHA3: 1b33b4387ec9f1a625cdbda62c2f7483275fe28f7fac424a026932e21d32d20f

File: ./contracts/interfaces/ichi/IICHIVault.sol
SHA3: 6e1ab915595d1e0f03cd382201d847eca802dc76f2e3ace869a57b2d5ad423e5

File: ./contracts/interfaces/ichi/IICHIVaultFactory.sol
SHA3: 6e8e4faec91904f61ea6d4d691a32c79807b2de1e2c3a4c66b91cc91cd88329e

File: ./contracts/interfaces/sushi/IMasterChef.sol
SHA3: 7a664ef616ae5925fda6162ae82b72187f6682d693da9ac796a648980e39c96d

File: ./contracts/libraries/BBMath.sol
SHA3: c296d7517b2e45537edbb4453656d4fe350b783958a78fb6944c3db3d63b48d7

File: ./contracts/libraries/UniV3/UniV3WrappedLib.sol
SHA3: db880c0271b9cec57045bc4676ded5b3045910d8e55f72cc2a16040f91dfd16d

File: ./contracts/libraries/UniV3/UniV3WrappedLibMockup.sol
SHA3: adb0165956b3f496ef16a2f0a2194007434baa6e52a529cb1cc752bad1fa3e1f

www.hacken.io
6

File: ./contracts/oracle/AggregatorOracle.sol
SHA3: 15f655b2cb3ca12f33cf244eb55d85887b2626fe32fa42237ca1f81acdd175cc

File: ./contracts/oracle/BandAdapterOracle.sol
SHA3: 83ed3c63ed8c08569ca17cf731b4a68692aaa10c5b06852c65a4958ee90ab823

File: ./contracts/oracle/BaseAdapter.sol
SHA3: 872a7d8c987cdfc18e4a4d780e87630d88aae50a7c3c5ff3aab799e98b3e9cc7

File: ./contracts/oracle/ChainlinkAdapterOracle.sol
SHA3: c56c9d55f1bfb10c09d0a3159cc8095432ac6573006f9bd4828efd863d170e5f

File: ./contracts/oracle/CoreOracle.sol
SHA3: 4cc82f1a15f90ab67a855aa70a9e586c25368d00a6b7a557d9d8561870e659e8

File: ./contracts/oracle/IchiVaultOracle.sol
SHA3: 5be6b6a2b2c74f67b33ee106a878049b077c4fe56bb8ab01a4db189c49566c34

File: ./contracts/oracle/UniswapV2Oracle.sol
SHA3: 978e7e11df9103502a319d22535293120a59741c2e045c1e10568bc6903af588

File: ./contracts/oracle/UniswapV3AdapterOracle.sol
SHA3: 556aa5c10bc11130f78b1cba19d720d9d564f3732bea57e94147b8820e085005

File: ./contracts/oracle/UsingBaseOracle.sol
SHA3: ebee3c87d6657584bc3dde07b18292c56ceb5053021447d4de2fbc4e13e0a453

File: ./contracts/spell/BasicSpell.sol
SHA3: 059b8ef3d0881987f904e1b4d8d31ed4543fb8d31e38bd54efb89389f03d70b5

File: ./contracts/spell/IchiSpell.sol
SHA3: d7d65df47e9e24ab282a68f56a9d71f4a242140106fd2325b82bb92b667b9a4b

File: ./contracts/utils/BlueBerryConst.sol
SHA3: 367351804cd29f826de2027d5637a5bf5e7d7e0326f01959bba946392dc19eeb

File: ./contracts/utils/BlueBerryErrors.sol
SHA3: 18234418a1698ca8b81144cebe60f52897dc4490abb2ad8a3e15d52900721e88

File: ./contracts/utils/ERC1155NaiveReceiver.sol
SHA3: c4c963d8f3aece96a64ce12d37be1025d667929a10889f35a263c5f010df7274

File: ./contracts/vault/HardVault.sol
SHA3: 11b1f973c63763f6b0813dd23b2550391003b029d0e5eb9d3ccf3b98021f34d7

File: ./contracts/vault/SoftVault.sol
SHA3: 1f5f86f874b33d69eaed4833d63d2a91b975bdb74b0ef27b2a7d6787843a0241

File: ./contracts/wrapper/WERC20.sol
SHA3: 0f66a2769a0971937f6a4b3a15d8e7a4cbbe82813e5c225eb5178bc9743aea3e

File: ./contracts/wrapper/WIchiFarm.sol
SHA3: 78fc477e7f62b87f1b8e725072aeb7c117e75870fdf719a4e6b395c6a2231025

www.hacken.io
7

Second review scope

Repository https://github.com/Blueberryfi/blueberry-core

Commit 13040356e26a0405f26b67ecc4b63c1631411ebe

Functional
Requirements

Public GitBook
General Architecture Overview

Technical
Requirements Essential Scripts

Contracts File: ./contracts/BlueBerryBank.sol
SHA3: d8731a795c09346b9360884f7c043345d7799486d112ceada4fe79a3b1604bde

File: ./contracts/FeeManager.sol
SHA3: b2d3d42a42b271309a4d69750380569fa100f7dc40537368b85f04dd57b35954

File: ./contracts/ProtocolConfig.sol
SHA3: d5cef5bdaec1277283d326be6ac2a0b019aea2d6c4535325a184a51d3ad730a7

File: ./contracts/interfaces/IBank.sol
SHA3: 1a100542f0c5bec03b11b8ae0fcb5609ebd4335975aa22451306edc342163195

File: ./contracts/interfaces/IBaseOracle.sol
SHA3: 1db54613a110c42336a1f00b14699f86dedf950eed8997f844be8e92d94a2ff0

File: ./contracts/interfaces/ICoreOracle.sol
SHA3: b4e05f0b3dcf6e53e6c01112c199d10c2d05d0e7796708e1b54ee9d3a1b39edf

File: ./contracts/interfaces/IERC20Wrapper.sol
SHA3: c9479f002df21291440465a676dccf592408916d6be88a9ac4467b8cf58ed758

File: ./contracts/interfaces/IFeeManager.sol
SHA3: 9d7dbcf3dd9a1ed6c54e40a6be5057d9f7889c85fcc4f5f6104ae95d2f171ac5

File: ./contracts/interfaces/IHardVault.sol
SHA3: 3cb04de9cc8d88b32b3f938abe9a0f19f890f46e6f2a4b541344272709c1ee89

File: ./contracts/interfaces/IProtocolConfig.sol
SHA3: 2cd0b9758c9f9f56ef9f8ad7579dc0cbae749b21b8de387790bb6ac9c25d4002

File: ./contracts/interfaces/ISoftVault.sol
SHA3: 576afe720c25d4c5f8ab2836e5346f93c5ba215463c366b5525ed2b14eacaab6

File: ./contracts/interfaces/IWERC20.sol
SHA3: 654a86c582b5819881339ef13ce004b64733bff68326b137588be0ca17570bea

File: ./contracts/interfaces/IWETH.sol
SHA3: 446f3e23908913f35b2515fc297117b3f920b140a0014f0356db969c1d550c9f

File: ./contracts/interfaces/IWIchiFarm.sol
SHA3: 49bf251356eea49824b2e9065caee1989fca859d5747ef86d76a353dcb3d0da6

File: ./contracts/interfaces/balancer/IBalancerPool.sol
SHA3: 1c53dd53251d7a22a9e32bc6fb25afba8c6223afd6c3c378ebf2255dacb12921

File: ./contracts/interfaces/band/IStdReference.sol
SHA3: 0f0355c059c5c8a0d407b42a5aac60d25e807917123f9f35a6978732af34615e

File: ./contracts/interfaces/chainlink/IFeedRegistry.sol
SHA3: 8ca9ce016071ca31dcfd31e1834f636d7ffba517d5aa63e47739fbdd92150614

www.hacken.io
8

https://github.com/Blueberryfi/blueberry-core
https://github.com/Blueberryfi/blueberry-core/tree/13040356e26a0405f26b67ecc4b63c1631411ebe
https://docs.blueberry.garden/
https://github.com/Blueberryfi/blueberry-core/blob/13040356e26a0405f26b67ecc4b63c1631411ebe/README.md
https://github.com/Blueberryfi/blueberry-core/blob/13040356e26a0405f26b67ecc4b63c1631411ebe/package.json#L8-L16

File: ./contracts/interfaces/compound/ICErc20.sol
SHA3: fb71211d798642299d48034ed6d163c2ec5b308fd198d2f7554d8acec3786679

File: ./contracts/interfaces/compound/ICErc20_2.sol
SHA3: a8c03e372a6a8ae4c2329e7a7d5fba5d520dd2593a091b19065c7318eb403ed2

File: ./contracts/interfaces/compound/ICEtherEx.sol
SHA3: fdb106979e9699fa7a79a7a84a01f871e4433da75bf5109cb69be2baf648d8c0

File: ./contracts/interfaces/compound/IComptroller.sol
SHA3: c61a8a0a4eff0b41dce16ca828fe00c66d95ccb6f6137754224ea7d29c42b7a4

File: ./contracts/interfaces/curve/ICurvePool.sol
SHA3: 58e0fd3e74a1963f2dfad95c1c47a2820a5ca58204d2d70b10659a72833e5028

File: ./contracts/interfaces/curve/ICurveRegistry.sol
SHA3: 1379a844012d10da4da18414617dd080a448330bf3af2198013edc9b253f586a

File: ./contracts/interfaces/curve/ILiquidityGauge.sol
SHA3: 61d9e445d6c875e89acd4e3d75ef1289a43f2450926ac7cf34b06d7977d94563

File: ./contracts/interfaces/ichi/IIchiFarm.sol
SHA3: f03dd038881f9608466857ae94890c309e82be916dcf09e332abe31536836e58

File: ./contracts/interfaces/ichi/IIchiV2.sol
SHA3: 1b33b4387ec9f1a625cdbda62c2f7483275fe28f7fac424a026932e21d32d20f

File: ./contracts/interfaces/ichi/IICHIVault.sol
SHA3: 6e1ab915595d1e0f03cd382201d847eca802dc76f2e3ace869a57b2d5ad423e5

File: ./contracts/interfaces/ichi/IICHIVaultFactory.sol
SHA3: 6e8e4faec91904f61ea6d4d691a32c79807b2de1e2c3a4c66b91cc91cd88329e

File: ./contracts/interfaces/sushi/IMasterChef.sol
SHA3: 7a664ef616ae5925fda6162ae82b72187f6682d693da9ac796a648980e39c96d

File: ./contracts/interfaces/uniswap/ISwapRouter.sol
SHA3: 15c12024ccbb7a09a89ce7b538f066ce3147b79596b7651a044f366f4742600a

File: ./contracts/interfaces/uniswap/IUniswapV2Router02.sol
SHA3: 0b62ead2d33459a571593e85f9171fe474c4db60bc1d5d2264dbb8cb4359c307

File: ./contracts/libraries/BBMath.sol
SHA3: c296d7517b2e45537edbb4453656d4fe350b783958a78fb6944c3db3d63b48d7

File: ./contracts/libraries/UniV3/UniV3WrappedLib.sol
SHA3: 12a31bb17192d9416840cd07a8c718b5e005735e126a5084d9be5b669c32d190

File: ./contracts/libraries/UniV3/UniV3WrappedLibMockup.sol
SHA3: d3431f97c177ae43e56807d37470cbf7c3ccf6ac7360227573a50d327dee86f6

File: ./contracts/oracle/AggregatorOracle.sol
SHA3: 1e1be29a36cdacb1ad794b4e487addd59830d374fdc581f2c54ddbe02f16b10e

File: ./contracts/oracle/BandAdapterOracle.sol
SHA3: 116e18e16a2f72a88522be8fbb16dcd87086fb6b3de82fb4a48f12172e770173

File: ./contracts/oracle/BaseAdapter.sol
SHA3: 341af6a666d8411ba0b9c03d469ee25469d96e23666d390dba07b87acc6e6c2c

File: ./contracts/oracle/BaseOracleExt.sol
SHA3: b49b8d1fe8b9155e0aff0e029ff58fc291d2534cea6e67674910bc2071433b0a

www.hacken.io
9

File: ./contracts/oracle/ChainlinkAdapterOracle.sol
SHA3: e5b456a892bd60eac7b1c25714799551362beb4cf34305ead5660eb490544b6a

File: ./contracts/oracle/CoreOracle.sol
SHA3: 93a314d9075bde5b0249151e1332e47f0d7999e215163cbd4db948e4f235ee91

File: ./contracts/oracle/IchiVaultOracle.sol
SHA3: a8369048c4b64d29eb050a8f8be942d816e27c206c81d4600b1528e99ae4139a

File: ./contracts/oracle/UniswapV2Oracle.sol
SHA3: 055624d61fa91c12e0869c3b6f13f1987f4205421dd3bffffa6c12090dcab990

File: ./contracts/oracle/UniswapV3AdapterOracle.sol
SHA3: eddfca88b8eea9a620f98d133a3136d492ecabc32156e4f7f567c5a0acd8d232

File: ./contracts/oracle/UsingBaseOracle.sol
SHA3: ebee3c87d6657584bc3dde07b18292c56ceb5053021447d4de2fbc4e13e0a453

File: ./contracts/spell/BasicSpell.sol
SHA3: 0e5628b3d5d8330fbc78cefe47ccda23b2a69208d8457866920c933a915f5439

File: ./contracts/spell/IchiSpell.sol
SHA3: a586f6d11d7f2fd48265e0658590f2f53aa43a3b1881837757221e982a9693d4

File: ./contracts/utils/BlueBerryConst.sol
SHA3: 86ffa312907d0b1edb3c4c8c3332848b80e6830b67aea735d1d1ac3dd0cdbb01

File: ./contracts/utils/BlueBerryErrors.sol
SHA3: f5549a4221bce91882fb23f1065110c0fd39742529700dbb1f590f11bb71a3ba

File: ./contracts/utils/EnsureApprove.sol
SHA3: b17e1fe16b8bf22ebe851596bfe913bfe1731af277f7f34863ad7ff6027bc004

File: ./contracts/utils/ERC1155NaiveReceiver.sol
SHA3: bc383cea203a41713365e01c26922f4a10129db6d1ba587e1659ed93c4cf0045

File: ./contracts/vault/HardVault.sol
SHA3: 7eca66aaf4b072846baadcf6baeb2f705683f24b1a2501c0bf29c068d89bdb43

File: ./contracts/vault/SoftVault.sol
SHA3: 5d57ae02bd2d24dea653b8b9d6cec84f8a217cb4ea20c066902c7b43c6dcecc7

File: ./contracts/wrapper/WERC20.sol
SHA3: c6d978f4a98503073296505fa1d4ea4109d555f36aa2cb9074f94cc2c152d56b

File: ./contracts/wrapper/WIchiFarm.sol
SHA3: dfa2fdddc3bc5192bc3bca3b6de0e2286b0467da1bef54ab561fd43a789075b4

www.hacken.io
10

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or contract
state manipulation by external or internal actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused code
or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality.

www.hacken.io
11

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are sufficient.
● Technical description is provided.

Code quality
The total Code Quality score is 8 out of 10.

● The code is designed in a way to do recursive contract calls
BlueBerryBank -> Spell -> BlueBerryBank.

● The code is missing initialization of PausableUpgradeable.
● The code is missing events for such actions as Spell whitelist or

permitting interactions by smart contracts.
● The code performs calls to the ERC20-approve function without

checking the return value.
● The code highly trusts vaults, tokens, etc. However, all the

interacted systems are whitelisted by the system owners.
● The development environment is configured.

Test coverage
Code coverage of the project is 89.39% (branch coverage).

Security score
As a result of the audit, the code does not contain security issues. The
score is 10 out of 10.

All found issues are displayed in the Findings section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2.

The system users should acknowledge all the risks summed up in the Risks
section of the report.

www.hacken.io
12

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Table. The distribution of issues during the audit

Review date Low Medium High Critical

7 April 2023 19 12 2 0

25 April 2023 0 0 0 0

Risks

● The system highly relies on the Blueberry Money Market and ICHI Farm
functionality which is out of the audit scope. The mentioned systems
receive access to user funds.

● The system uses prices received from Band Protocol, Chainlink,
Uniswap (at previous blocks), and possibly other sources. The data
providers may affect user position states. Check if the sources are
stable and do not have disclosed vulnerabilities.

● IchiVaultOracle highly relies on IchiVault. In case the IchiVault
reserves could be manipulated, the resulting price may be affected
and some positions become at risk of liquidation. It is recommended
to check that the used IchiVault instances do not have disclosed
vulnerabilities and could not be significantly affected by any third
party.

● The AggregatorOracle contract receives data from several sources and
checks if the deviation of the price is within bounds. However, in
case only one source responds with a price, that value is used. In
case some of the sources are unstable or vulnerable, an attacker may
manipulate the resulting price. It is recommended to ensure that the
contract relies on stable data providers.

● According to the documentation, only the CoreOracle contract should
be used for providing prices to the target contracts (BlueberryBank,
IchiSpell, etc.). In case another oracle is used, important price
validations may be missed.

● The oracles highly depend on the owner. The owner is able to
manipulate token prices received by the project.

● The Admin of BlueBerryBank may disable/enable actions for users at
any time: lend, withdraw, repay, borrow.

● The Admin of BlueBerryBank may de-whitelist previously whitelisted
tokens and spells.

● The system may be vulnerable to uncommon ERC20 tokens such as tokens
with floating decimals (and 19+ decimals), fee-on-transfer tokens, or
tokens with a non-failing approve function implemented (which in case
of error returns false instead of reverting the transaction).

● The IchiSpell contract allows the Admin to add strategies with custom
vault addresses. The pool address received from the vault contract is
able to drain any allowances to the IchiSpell contract.

www.hacken.io
13

● In case repaying is not enabled on the contract, it is impossible to
liquidate risky positions. Users and the platform may lose their
assets or funds value.

● In case of high borrowing interest rates, it may be impossible to
withdraw lent funds and collaterals until someone’s debt is not
repaid.

● The Admin of BlueBerryBank may change the maximum “loan to value”
proportion for any collateral at any time.

www.hacken.io
14

System Overview

Blueberry Bank is a leveraged yield-farming platform. It consists of
● BlueBerryBank — the main system contract, which supports borrowing,

lending, and repaying debts according to a selected strategy.
● WERC20 — an ERC1155 wrapper of ERC20 tokens.
● WIchiFarm — a wrapper of the ICHI liquidity management protocol.
● HardVault — an ERC1155 contract which represents the deposits as an

ERC1155 collection.
● SoftVault — an ERC20 token contract that represents the number of

tokens lent to the Blueberry Money Market.
● Spell contracts — strategy contracts that support undersecure

borrowed funds to be used for leverage farming.
● Oracles — contracts to manage trusted data sources and allow

retrieval of token prices.

Privileged roles
FeeManager, HardVault, SoftVault, WERC20, WIchiFarm, BlueBerryBank,
ProtocolConfig, IchiSpell, CoreOracle:

● Admin (owner) — can upgrade the contract logic.
BlueBerryBank:

● Admin (owner) — can
○ allow or disallow taking/repaying loans,
○ allow or disallow lending/withdrawing isolated collateral,
○ whitelist a spell contract,
○ whitelist tokens,
○ whitelist ERC1155 tokens,
○ allow or disallow contract calls.

● EOA or Whitelisted contract — can create a position and interact with
the contract.

ProtocolConfig:
● Admin (owner) — can

○ set all the fee values,
○ set fee manager, treasury, pool, and vault addresses.

IchiSpell:
● Admin (owner) — can

○ add strategies,
○ set “max position size”,
○ set “max loan to value” for different strategies and tokens.

Oracle:
● Admin (owner) — can

○ pause and unpause CoreOracle,
○ set Oracle routes, refs, data feeds, and time gaps.

www.hacken.io
15

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
16

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

www.hacken.io
17

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. The usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
18

Findings

Critical

No critical severity issues were found.

High

H01. Upgradeability Issues — Missing Storage Gap

The contracts are abstract and upgradable but do not follow the
upgradability best practices by not adding a gap in the contract
storage.

This may lead to a child contract storage layout corruption during an
upgrade.

Paths: ./contracts/spell/BasicSpell.sol: __gap()

Recommendation: add a gap to the contract storage to allow future
upgradability.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

H02. Invalid Calculations — Collateral Value Corruption

underlyingVaultShare is multiplied by bToken.exchangeRateStored
independently on the result of _isSoftVault(underlyingToken).

For the case _isSoftVault(underlyingToken) to be true, the
underlyingVaultShare equals the amount of bToken and the
multiplication is needed.

However, in case of _isSoftVault(underlyingToken) being false during
the lend process, the tokens are deposited to the HardVault contract
and underlyingVaultShare equals the amount of underlyingToken. Thus,
the value should not be multiplied by bToken.exchangeRateStored in
the target function.

This may lead to the function returning incorrect value and the
position cannot be liquidated in time or is liquidated too early.

Paths: ./contracts/BlueBerryBank.sol: getIsolatedCollateralValue()

Recommendation: check the _isSoftVault(underlyingToken) value and do
not perform the multiplication if it is false.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

www.hacken.io
19

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

Medium

M01. Unscalable Functionality — Immutable Position Token

The function provides the ability to (lend / borrow) (isolated
collateral / debt token) to the specified position. However, there is
no possibility for a change of the position’s token in the future.

This may lead to the user being unable to provide wanted (isolated
collateral / debt token) to the position and creating a new position
wasting Gas.

Path: ./contracts/BlueBerryBank.sol: lend(), borrow()

Recommendation: allow (isolated collateral / debt token) reset if no
isolated collaterals are deposited (the way it is implemented in the
putCollateral function).

Found in: 42671b9

Status: Mitigated (implemented logic matches the expected result)

M02. Best Practice Violation — Zero Price Allowed

It is not checked that the received price is not zero.

This may lead to a broken oracle being considered a valid one.

Path: ./contracts/oracle/AggregatorOracle.sol: getPrice()

Recommendation: provide the corresponding check.

Found in: 42671b9

Status: Mitigated (according to the project architecture, it is
designed to interact with the oracles only through the CoreOracle
contract)

M03. Contradiction — Unchecked Relyment

The contract logic relies on the fact that token decimals of the
original and remapped tokens are the same. However, the corresponding
check is not implemented.

This may lead to the wrong price being returned by the oracle.

Path: ./contracts/oracle/ChainlinkAdapterOracle.sol:
setTokenRemappings()

Recommendation: provide the corresponding check.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

www.hacken.io
20

M04. Contradiction — Zero Price Allowed

The function does not fully check that the token is supported. The
check against a zero price is missing.

This may lead to the wrong assumptions about the oracle's ability to
provide the token price.

Path: ./contracts/oracle/CoreOracle.sol: isWrappedTokenSupported()

Recommendation: use the isTokenSupported function over the uToken
value to be consistent with the check.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M05. Contradiction — Requirement Violation

The function allows requesting prices of unsupported tokens. It does
not check if the token is whitelisted. However, the contract should
not process an unsupported token as a valid one.

This may lead to the wrong assumption of the token status.

Path: ./contracts/oracle/CoreOracle.sol: getPositionValue()

Recommendation: provide the corresponding check.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M06. Contradiction — Unchecked Relyment

The function logic relies on the fact that the underlying token is an
LP token, and it always has 18 decimals. However, the corresponding
check is not implemented.

This may lead to the wrong price being returned by the oracle.

Path: ./contracts/oracle/CoreOracle.sol: getPositionValue()

Recommendation: use the getTokenValue function to calculate the
correct price.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M07. Contradiction — Unvalidated TWAP Period

The value received from vault.twapPeriod() is not validated, however,
it is used as a parameter for the UniV3WrappedLibMockup.consult call.

This may lead to the received price being affected by an attacker.

www.hacken.io
21

Path: ./contracts/oracle/IchiVaultOracle.sol: twapPrice0InToken1()

Recommendation: make sure that the value is big enough that an
attacker can not affect the result.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M08. Contradiction — Unchecked Relyment

The function logic relies on the vault token having 18 decimals.
However, this fact is not checked.

This may lead to the wrong price being returned by the oracle.

Path: ./contracts/oracle/IchiVaultOracle.sol: getPrice()

Recommendation: use 10 ** vault.decimals() instead of 10e18 to
calculate the correct price.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M09. Contradiction — Unchecked Relyment

The contract highly relies on the stablePools[token] pool including
the token as one of the assets pair. However, the function does not
check this fact.

This may lead to the wrong price being returned by the oracle.

Path: ./contracts/oracle/UniswapV3AdapterOracle.sol: setStablePools()

Recommendation: provide the corresponding check.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M10. Contradiction — Unvalidated TWAP Period

The maxDelayTimes functionality is implemented to prevent outdated
prices received by users. However, in the function, it is used as a
secondsAgo value for calculating arithmeticMeanTick which in turn is
used to get a price from OracleLibrary.

secondsAgo is allowed to be 10 seconds which is a low value and could
be influenced by an attacker.

This may lead to wrong assumptions on the setMaxDelayTimes function
purpose, and the wrong price being returned by the oracle.

Path: ./contracts/oracle/UniswapV3AdapterOracle.sol: getPrice()

www.hacken.io
22

Recommendation: provide declarative namings and set a reasonable
secondsAgo minimal value to prevent the price from being influenced.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M11. Best Practice Violation — Denial of Service

There are some tokens that reject non-zero approves if the current
allowance is non-zero. The functions perform approvals without a
previous reset.

This may lead to a Denial of Service contract state during such
tokens are interacted with.

There is an _ensureApprove mechanic implemented in different ways in
different contracts. This makes it unclear if the approval reset is
performed.

Paths:
./contracts/BlueBerryBank.sol: _ensureApprove()
./contracts/spell/BasicSpell.sol: _ensureApprove()
./contracts/vault/SoftVault.sol: _ensureApprove()
./contracts/wrapper/WIchiFarm.sol: _ensureApprove()

Recommendation: move the _ensureApprove functionality to a separate
module, and implement an approve reset there.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

M12. Best Practice Violation — Unpausable Oracles

The price data feeds could not be paused if an emergency situation on
the data provider happens.

This may lead to the inability to quickly pause a specified oracle to
prevent total system harm.

Paths:
./contracts/oracle/IchiVaultOracle.sol: getPrice()
./contracts/oracle/UniswapV2Oracle.sol: getPrice()

Recommendation: implement an ability to pause the getPrice
functionality of the oracles.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

www.hacken.io
23

Low

L01. Mixing Whitelists

The whitelist functionality is provided in the BlueBerryBank
contract. However, the function uses a whitelist set up on the
CoreOracle contract.

This may lead to the wrong assumption on which tokens are whitelisted
and allowed to be used as collaterals or isolated collaterals.

Paths:
./contracts/BlueBerryBank.sol: putCollateral()
./contracts/oracle/CoreOracle.sol: setWhitelistERC1155()

Recommendation: implement whitelists on one contract and provide
corresponding namings which represent the group of tokens managed by
the whitelist.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L02. Redundant Statements

The variables are never used and could be removed.

Path: ./contracts/libraries/UniV3/UniV3WrappedLib.sol:
MIN_SQRT_RATIO, MAX_SQRT_RATIO

Recommendation: remove the redundant statements.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L02-1. Redundant Statements

The variables are never used and could be removed.

Path: ./contracts/libraries/UniV3/UniV3WrappedLibMockup.sol:
MIN_SQRT_RATIO, MAX_SQRT_RATIO

Recommendation: remove the redundant statements.

Found in: 42671b9

Status: Mitigated (the values are needed for project tests and are
native UniswapV3 constants)

L03. Parameters Order Dependence

The function result value depends on the order of the price0 and
price1 values processed.

It may happen that price0 is always used as the denominator.

www.hacken.io
24

Example: for price0 = 90 & price1 = 100 & maxDeviation = 10% the
result is negative, however, the result is positive for price0 = 100
& price1 = 90 & maxDeviation = 10%.

Paths:
./contracts/oracle/AggregatorOracle.sol: _isValidPrices()
./contracts/oracle/IchiVaultOracle.sol: _isValidPrices()

Recommendation: use the smallest/biggest value as the denominator to
make the function result independent of the order of the values.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L04. Unscalable Functionality

The contract allows setting remapped tokens. However, it does not
allow clearing the remapped token addresses.

Although it is possible to set the token to be remapped to itself, it
uses contract storage and makes the remapping management process
unclear.

Path: ./contracts/oracle/ChainlinkAdapterOracle.sol:
setTokenRemappings()

Recommendation: remove the check preventing a remapped token from
being 0x0.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L05. Redundant Using Statement

The using statement is redundant as the library is not used directly
for the specified type.

Path: ./contracts/oracle/UniswapV2Oracle.sol
● using BBMath for uint256

Recommendation: remove the redundant statement.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L06. Unscalable Functionality

The contract allows setting routes to data providers for each of the
supported tokens. However, it does not allow clearing the route
addresses.

Although it is possible to set a route to a nonexistent address, it
uses contract storage and makes the route management process unclear.

www.hacken.io
25

Path: ./contracts/oracle/CoreOracle.sol: setRoutes()

Recommendation: remove the check preventing a route from being 0x0.

Found in: 42671b9

Status: Mitigated (according to the client such logic matches the
expected behavior)

L07. Legacy Check

answeredInRound is a legacy variable and should not be used for price
freshness validation.

Path: ./contracts/oracle/ChainlinkAdapterOracle.sol: getPrice()

Recommendation: remove the legacy variable usage.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L08. Mixing Functionality Purposes

The liquidation threshold management functionality is unrelated to
the oracling of any data. It could be moved to a special
configuration contract to clarify the contract’s purpose.

Path: ./contracts/oracle/CoreOracle.sol: setLiqThresholds()

Recommendation: split the contract to clarify functionality purposes.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L09. Best Practice Violation

The system of the contracts has the PRICE_PRECISION constant value,
but the constant is not widely used across the project.

Paths:
./contracts/oracle/ChainlinkAdapterOracle.sol: getPrice()
./contracts/oracle/CoreOracle.sol: getPositionValue()
./contracts/oracle/IchiVaultOracle.sol: getPrice()
./contracts/wrapper/WIchiFarm.sol: pendingRewards()
./contracts/BlueBerryBank.sol: getIsolatedCollateralValue()

Recommendation: replace the price precision 1e18 value with a
constant.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

www.hacken.io
26

L10. Code Duplication

The functionality of price deviation in bounds is implemented twice
with the same code and purpose.

Paths:
./contracts/oracle/AggregatorOracle.sol: _isValidPrices(),
_setPrimarySources()
./contracts/oracle/IchiVaultOracle.sol: _isValidPrices(),
setPriceDeviation()

Recommendation: move the functionality to a separate module, avoid
code duplications.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L11. Missing Implementation Initialization

According to the upgradable contracts pattern documentation, it is
recommended to disable the possibility of initialization on the logic
contract.

It may be done by adding the constructor to the target code.

/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {

_disableInitializers();
}

Paths:
./contracts/ProtocolConfig.sol
./contracts/BlueBerryBank.sol
./contracts/wrapper/WIchiFarm.sol
./contracts/wrapper/WERC20.sol
./contracts/vault/SoftVault.sol
./contracts/vault/HardVault.sol
./contracts/spell/IchiSpell.sol
./contracts/oracle/CoreOracle.sol

Recommendation: add a constructor to the target code to prevent logic
contracts from being overtaken.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L12. Misleading Names

The function is named getPositionValue, however, it does not
correspond to the contract’s purpose. It could be renamed to
getWrappedTokenValue.

www.hacken.io
27

The return parameters are named positionValue and debtValue, however,
they do not correspond to the function's purposes. They could be
named wrappedTokenValue and tokenValue correspondingly.

Path: ./contracts/oracle/CoreOracle.sol: getPositionValue(),
getTokenValue()

Recommendation: provide correct naming representing the object’s
purpose.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L13. Redundant Imports

The import statements are redundant as the imported objects are
unused.

Paths:
./contracts/oracle/IchiVaultOracle.sol

● @uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol
./contracts/oracle/UniswapV2Oracle.sol

● @uniswap/v2-periphery/contracts/interfaces/
IUniswapV2Router02.sol

./contracts/oracle/UniswapV3AdapterOracle.sol
● @openzeppelin/contracts/access/Ownable.sol

./contracts/wrapper/WIchiFarm.sol
● @openzeppelin/contracts-upgradeable/token/ERC20/extensions/

IERC20MetadataUpgradeable.sol
./contracts/vault/SoftVault.sol

● ../utils/BlueBerryConst.sol
./contracts/vault/HardVault.sol

● ../utils/BlueBerryConst.sol
./contracts/spell/BasicSpell.sol

● ../interfaces/IWETH.sol

Recommendation: remove the redundant statements.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L14. Redundant Actions

int24 twapTick received from UniV3WrappedLibMockup is implicitly
upcasted to int256 during an assignment and then is explicitly
downcasted back to int24.

The bank.getPositionInfo(bank.POSITION_ID()) call is performed twice,
however, it is not necessary.

www.hacken.io
28

Paths:
./contracts/oracle/IchiVaultOracle.sol: twapPrice0InToken1()
./contracts/spell/IchiSpell.sol: reducePosition()

Recommendation: remove the redundant actions.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L15. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

Paths:
./contracts/spell/IchiSpell.sol: initialize()
./contracts/spell/BasicSpell.sol: __BasicSpell_init()
./contracts/wrapper/WIchiFarm.sol: initialize()

Recommendation: provide a check against 0x0.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L16. Duplicated Hardcoded Values

The contracts system has constant values; it is widely used across
some contracts.

This may lead to typos during further development, which may affect
the project’s functionality.

Path: ./contracts/ProtocolConfig.sol: setDepositFee(),
setWithdrawFee(), setMaxSlippageOfClose(), setRewardFee()

Recommendation: move the commonly used values to the BlueBerryConst
file.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L17. Code Duplication

ERC20 being wrapped to an ERC1155 functionality is implemented twice.

Paths:
./contracts/vault/HardVault.sol: _encodeTokenId(), _decodeTokenId(),
balanceOfERC20(), getUnderlyingToken()
./contracts/wrapper/WERC20.sol: _encodeTokenId(), _decodeTokenId(),
balanceOfERC20(), getUnderlyingToken()

www.hacken.io
29

Recommendation: move the functionality to a separate module, avoid
code duplications.

Found in: 42671b9

Status: Mitigated (different implementations of the mentioned
functions would be introduced in the future, as a result, such
functionality presented in a separate module may be confusing)

L18. Default Visibility

Functions and state variables visibility should be set explicitly.
Visibility levels should be specified consciously.

Path: ./contracts/FeeManager.sol: config

Recommendation: provide visibility levels consciously.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

L19. Best Practice Violation

Same code style over the project is broken. The project mixes default
approve and custom _ensureApprove functions.

Paths:
./contracts/BlueBerryBank.sol: withdrawLend()
./contracts/spell/IchiSpell.sol: openPositionFarm()
./contracts/vault/HardVault.sol: withdraw()
./contracts/wrapper/WIchiFarm.sol: _ensureApprove()

Recommendation: use the universal _ensureApprove functionality to
increase token transfer allowance.

Found in: 42671b9

Status: Fixed (Revised commit: 1304035)

www.hacken.io
30

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
31

